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Abstract In this Master’s Thesis, the inverse
electromagnetic scattering problem of determining the
geometrical and physical characteristics of a layered sphere
is analytically investigated. Efficient algorithms in the low-
frequency region are analyzed. These algorithms utilize
essentially the information encoded in the scattered far-field
due to primary dipoles lying at different locations inside or
outside the scatterer.
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. INTRODUCTION

Scattering theory usually investigates the interactions
of an incident wave with a bounded three-dimensional
obstacle. Collections of results for scattering by canonical
shapes are included in the classic book by Bowman,
Senior, and Uslenghi (1969). In the low-frequency region,
acoustic, electromagnetic and elastic scattering problems
are analysed systematically in the book by Dassios and
Kleinman (2000).

A normalized spherical incident field due to an
acoustic point source lying in the exterior of the scatterer
was introduced in (Dassios & Kamvyssas, 1995), where
low-frequency far-field results in the case of a non-
penetrable spherical scatterer were obtained and inverse
scattering problems were investigated. The normalization
was mainly utilized to retrieve the respective results due
to plane incident waves. Low-frequency direct and inverse
problems for acoustically penetrable spheres were treated
in (Dassios, Hadjinicolaou & Kamvyssas, 1999). Near-
field inverse scattering problems for small spheres were
investigated in (Athanasiadis, Martin & Stratis, 2001 and
2003). Electromagnetic direct and low-frequency inverse
scattering problems corresponding to the interior or
exterior excitation of a layered sphere by a point dipole
were investigated in (Tsitsas & Athanasiadis, 2006) and
(Tsitsas, 2009).

It is worth to note that the scattering of spherical
electromagnetic waves by piecewise homogeneous
scatterers has interesting physical and technological
applications. One of the most representative applications
is the study of the interaction between the antenna of the
mobile phone and the human head; the generated
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electromagnetic field is spherical due to the close
proximity of the mobile phone antenna to the human head.
The determination of the total radiation, which is absorbed
by the head, provides important information related to the
biological effects of electromagnetic radiation.

In this Thesis, analytical methodologies are
investigated, treating the inverse scattering problem of a
normalized spherical electromagnetic wave by a layered
spherical scatterer. More precisely, a 2-layered spherical
scatterer is considered where the first layer is dielectric
and the second layer (core) is either dielectric or perfectly
electric conducting. The inverse scattering problems under
examination concern the determination of the layers’ radii
and the location of the sphere’s center as well as the
physical characteristics of the scatterer from known data
of the scattered electromagnetic field.

The direct electromagnetic scattering problem is
solved analytically in every region by imposing a
combined Sommerfeld T-matrix algorithm. Then, the
exact field expressions are approximated in the low-
frequency realm in order to derive useful asymptotic
expansions of the far-field pattern and the scattering cross
section. These low-frequency expansions are effectively
utilized in the establishment of the above mentioned
inverse scattering algorithms. In particular, first, a
geometric method is described for the solution of the
inverse scattering problem referring to the determination
of the sphere’s center and the layers radii for known
physical characteristics of the sphere. Then, the inverse
problem of determining the material parameters of the 2-
layered sphere for known geometrical characteristics is
considered. The latter problem requires the use of interior
as well as exterior primary dipole excitations.

Il. METHODOLOGY

A. Mathematical Formulation

Consider a spherical scatterer V with radius a;. The
interior of V is divided into two spherical layers V; and V,,
respectively, defined by a,<r<a; and 0<r<a,. Layer V, is
occupied by a material with dielectric permittivity ¢; and
magnetic permeability x;. The core V, is either dielectric
specified by physical constants &, and w, or perfect electric



conducting (PEC). The exterior V, (r>a;) of the scatterer V

is homogeneous with permittivity ¢, and permeability u.
The scatterer V is excited by a time-harmonic spherical

electromagnetic wave, generated by a magnetic dipole at r,

of layer Vq (4=0,1,2) with moment f, xp . The primary
electric field radiated by this dipole is expressed by
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where rq=|rq| and k, denotes the wavenumber of layer V.
For a dipole receding to infinity, this spherical wave
reduces to a unit amplitude plane wave with direction of

propagation —f, and polarization p (Tsitsas, 2009).

The total electric field in V, is defined as the
superposition of the primary and the secondary field

E. (np)=E (nP)+E-(np). reVo\{r}. @
while the total field in V; (j+q) is the secondary field E! .
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The primary and secondary fields in the above described
spherical scatterer satisfy Maxwell’s equations with linear
isotropic constitutive relations (determined by scalar
piecewise constant permittivity and permeability) and with
vanishing electric charge and current density. By
combining Maxwell’s equations with the -constitutive
relations, it is verified that the electric field in layer V;
satisfies the vector Helmholtz equation

V'E, (r:p)+KE, (r:p) =0,
for reV;if j=qand reV,\{r}if j=0.
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The total electric fields satisfy the transmission
boundary conditions on the spherical surfaces r=a; (j=1,2)

PxE/"(r;p) = FxE] (r;p)
PxVXEIN(rp) = (14 | )P xVXEL (r;p)

For a PEC core, conditions (4) hold only for j=1, while on
r=a, the PEC boundary condition holds

finq (r;p) =0. (5)
The total electric field in the unbounded domain V,
satisfies the Silver-Miiller radiation condition (Colton &
Kress, 1992)
|im[fxvxE$q(r;p)+ik0rEEq(r;p)}:o (®)
r—oo
uniformly for all directions  in the unit sphere S*.

The secondary and the total electric fields in V, have,
respectively, the asymptotic expressions for r—oo,

E () = g,, (7)1 (ko) + O(r ),
E? (1;P) =9, (P, (k) +O(r?), q=1

where hy the zero-th order spherical Hankel function of the
first kind, while the g-excitation far-field pattern g
describes the response of the scatterer in the far-field, due
to the excitation by the primary field in layer Vi,

The g-excitation total cross-section is defined by
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and represents the average of the far-field’s power radiated

over all directions, due to the dipole excitation in layer V.

B. Solution of the Direct Scattering Problem

The solution of the direct scattering problem is
obtained by imposing a combined Sommerfeld T-matrix
analytic algorithm (Tsitsas, 2009). The Sommerfeld’s
method (Sommerfeld, 1949) handles the singularity of the
dipole  field, while the  T-matrix  method
(Valagiannopoulos & Tsitsas, 2009) the effect of the
sphere’s layers. More precisely, the primary and
secondary fields in every layer are expressed as series of
the spherical vector wave functions. The unknown
coefficients in the secondary fields’ expansions are,
subsequently, determined by applying a T-matrix method.
The procedure is analyzed in (Tsitsas, 2009) while details
of the calculations are included in (Katsimaglis, 2013).

The g-excitation far-field pattern, as determined by
applying the above mentioned algorithmic procedure, is

= (2n+1)(-)
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where functions B and C are defined in (Morse &
Feshbach, 1953), a; ~and S are determined

coefficients, while ﬁn (z) = zh (z) . The g-excitation total

cross-section is calculated by combining (8) and (9),
yielding the final result
2
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where 7, , and J, ,
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are connected to a_

C. Low-Frequency Approximations

The exact far-field solutions (9) and (10) are expressed
as complicated series expansions. They can be simplified
and become more workable by imposing the low-frequency
assumption koa;<<1, namely by assuming that the sphere’s
radius a; is much smaller than the primary field’s
wavelength. Under this assumption, the approximations of
the g-excitation far-field pattern, for the case of a PEC core,
are found to be
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where P and Q are determmed coefficients, while z;=a/r;
(i=1,2), and 771=k1/k0.
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Similar low-frequency approximations can be derived
for the case of a dielectric core.

The obtained simplified low-frequency expressions can
be effectively utilized in the establishment of inverse
scattering algorithms concerning the determination of the
scattering problem’s parameters via combinations of
certain far-field measurements.

I1l.  SELECTED RESULTS

In this section, certain selected results are included
concerning developed low-frequency inverse scattering
algorithms for the determination of the geometrical and
physical characteristics of the 2-layered sphere.

A. Localization of the Sphere and Reconstruction of its
Geometrical Characteristics

We seek to determine the center’s coordinates and the
layers radii of a 2-layered sphere with a PEC core and
given dielectric permittivity and magnetic permeability of
the covering layer. We consider the Cartesian coordinate
system Oxyz and for a chosen fixed length ¢ the five
dipole locations (0,0,0), (¢,0,0), (0,£,0), (0,0,£), and (0,0,2¢)
with unknown distances b, b,, bs, bs, and bs from the
sphere’s center (see Fig. 1). For each dipole’s location we
measure the leading-order low-frequency term of the 0-
excitation total cross-section (11), and obtain the five
measurements

mJ' :%”aiz(Qo,l(ai’az))z(%/bj)‘lv J =1,
(13)

Figure 1. The five dipoles’ locations utilized for the formulation of the
inverse scattering algorithm determining the center’s coordinates and the
layers radii of a 2-layered sphere with a PEC core.

Next, we use the dimensionless normalization
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Egs. (14) constitute a system of five equations with the
seven unknowns a, a,, and b;. The sixth equation is the
law of cosines

b? =20% +2b7 —b?, (15)

which by means of (14) is written in normalized form as

3
- /6 =
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The seventh equation is derived by measuring the cross-
section for a dipole far away from the sphere (so that we
admit plane wave incidence). This measurement is
obtained from (11) for 7,—0 (see also (Tsitsas, 2009)),
yielding

= %”af (koa1)4[4(Po,1(a1’ az))2 + (Qo,l(ay az))z]

(17)

By eliminating the factor Qo,lal3 between (14) and (16),
2y;

we get
2
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which determines the distances b;. Then, the center of the
2-layered sphere coincides with the intersection point of
the four spheres centered at (0,0,0), (¢,0,0), (0,£,0), (0,0,£)
with determined radii by, by, bs, ba.

The layers radii a; and a, are determined by the
solution of the following 2x2 non-linear system of (14)
for j=1 and (17)

a’Qy, (8, 8,) = /2 (b7 / 7,

+2y,—7 - (16)

(18)
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B. Reconstruction of the Sphere’s Physical
Characteristics

Now, we seek to determine the relative dielectric
permittivities and magnetic permeabilities of the sphere’s
layers for given center’s coordinates and layers radii. The
inverse scattering algorithm is developed for a 2-layered
dielectric sphere. Hence, we will determine the four
material parameters &1, &, (1, and uy, for given radii a;
and a,.

Consider an exterior dipole at (0,0,bg) with known
distance bg>a; from the sphere’s center (see Fig. 2) and
measure the leading order m; and second-order m, low-
frequency terms of the corresponding O-excitation total
cross-section’s expansion (see (4.17) of (Tsitsas, 2009)).
Thus, we obtain

6
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o

and

6
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)
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where the R and the S parameters are defined in (Tsitsas,
2009).

Next, consider an interior dipole at (0,0,b,) with known
distance a,<h;<a; from the center (see Fig. 2) and
measure the leading order term mj; of the 1-excitation total
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cross-section’s expansion (see (4.18) of (Tsitsas, 2009)).
This, yields

6 (S 2
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Figure 2. The two dipoles’ locations utilized for the formulation of the
inverse scattering algorithm determining the material parameters of a 2-
layered sphere with a dielectric core.

Finally, measure the leading-order low-frequency term
m, for plane wave incidence (by removing the exterior
dipole far away from the sphere) to get

m, =%;zk8‘af I:(RO,l(‘grl’ng))2 +(SO,l(ﬂ|’1"ur2))2i|'

(23)
Now, Egs. (20) and (22) take the form
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Besides, by combining (20) with (23), we have
1
(RO,l(grlv grz))z = %k‘l_af(m‘l - kébgml) ., (26)
0

while by combining (20) and (21) with (26), we obtain

be m
S ’ 2_ 5 0 _ 4
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m, +2kZbZm,
(27)
Egs. (24)-(27) constitute a 4x4 non-linear system with
respect to the unknown physical parameters &1, i1, and &,
o Of layers V; and V,, respectively.

The inverse scattering problem for a 2-layered sphere
with PEC core can be handled by a similar and simpler
procedure. For this type of problem we need to determine
the two unknown material parameters ¢,; and . of layer
V, for given radii a; and a,. Thus, two measurements will
be sufficient.

IVV. CONCLUSIONS

In this Thesis, simple and efficient algorithms
concerning the inverse low-frequency electromagnetic
scattering problem of a piecewise homogeneous spherical
scatterer were investigated. The primary field was due to a
point dipole lying in the interior or the exterior of the
spherical scatterer. Two particular far-field inverse
problems were examined: the first concerned the
determination of the layers’ radii and the location of the
sphere’s center and the second the determination of the
physical characteristics of the sphere.

Interesting future research directions concern the
investigations of the corresponding direct and inverse
scattering problems with point dipoles lying at arbitrary
locations inside or outside the sphere (not necessarily on
the z-axis) and possessing arbitrary polarizations.
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