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Abstract – In this Master’s Thesis, the inverse 

electromagnetic scattering problem of determining the 

geometrical and physical characteristics of a layered sphere 

is analytically investigated. Efficient algorithms in the low-

frequency region are analyzed. These algorithms utilize 

essentially the information encoded in the scattered far-field 

due to primary dipoles lying at different locations inside or 

outside the scatterer. 
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I.  INTRODUCTION 

Scattering theory usually investigates the interactions 

of an incident wave with a bounded three-dimensional 

obstacle. Collections of results for scattering by canonical 

shapes are included in the classic book by Bowman, 

Senior, and Uslenghi (1969). In the low-frequency region, 

acoustic, electromagnetic and elastic scattering problems 

are analysed systematically in the book by Dassios and 

Kleinman (2000). 

A normalized spherical incident field due to an 

acoustic point source lying in the exterior of the scatterer 

was introduced in (Dassios & Kamvyssas, 1995), where 

low-frequency far-field results in the case of a non-

penetrable spherical scatterer were obtained and inverse 

scattering problems were investigated. The normalization 

was mainly utilized to retrieve the respective results due 

to plane incident waves. Low-frequency direct and inverse 

problems for acoustically penetrable spheres were treated 

in (Dassios, Hadjinicolaou & Kamvyssas, 1999). Near-

field inverse scattering problems for small spheres were 

investigated in (Athanasiadis, Martin & Stratis, 2001 and 

2003). Electromagnetic direct and low-frequency inverse 

scattering problems corresponding to the interior or 

exterior excitation of a layered sphere by a point dipole 

were investigated in (Tsitsas & Athanasiadis, 2006) and 

(Tsitsas, 2009). 

It is worth to note that the scattering of spherical 

electromagnetic waves by piecewise homogeneous 

scatterers has interesting physical and technological 

applications. One of the most representative applications 

is the study of the interaction between the antenna of the 

mobile phone and the human head; the generated 

electromagnetic field is spherical due to the close 

proximity of the mobile phone antenna to the human head. 

The determination of the total radiation, which is absorbed 

by the head, provides important information related to the 

biological effects of electromagnetic radiation. 

In this Thesis, analytical methodologies are 

investigated, treating the inverse scattering problem of a 

normalized spherical electromagnetic wave by a layered 

spherical scatterer. More precisely, a 2-layered spherical 

scatterer is considered where the first layer is dielectric 

and the second layer (core) is either dielectric or perfectly 

electric conducting. The inverse scattering problems under 

examination concern the determination of the layers’ radii 

and the location of the sphere’s center as well as the 

physical characteristics of the scatterer from known data 

of the scattered electromagnetic field. 

The direct electromagnetic scattering problem is 

solved analytically in every region by imposing a 

combined Sommerfeld T-matrix algorithm. Then, the 

exact field expressions are approximated in the low-

frequency realm in order to derive useful asymptotic 

expansions of the far-field pattern and the scattering cross 

section. These low-frequency expansions are effectively 

utilized in the establishment of the above mentioned 

inverse scattering algorithms. In particular, first, a 

geometric method is described for the solution of the 

inverse scattering problem referring to the determination 

of the sphere’s center and the layers radii for known 

physical characteristics of the sphere. Then, the inverse 

problem of determining the material parameters of the 2-

layered sphere for known geometrical characteristics is 

considered. The latter problem requires the use of interior 

as well as exterior primary dipole excitations. 

II. METHODOLOGY 

A. Mathematical Formulation 

Consider a spherical scatterer V with radius a1. The 

interior of V is divided into two spherical layers V1 and V2, 

respectively, defined by a2<r<a1 and 0≤r<a2. Layer V1 is 

occupied by a material with dielectric permittivity ε1 and 

magnetic permeability μ1. The core V2 is either dielectric 

specified by physical constants ε2 and μ2 or perfect electric 
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conducting (PEC). The exterior V0 (r>a1) of the scatterer V 

is homogeneous with permittivity ε0 and permeability μ0. 

The scatterer V is excited by a time-harmonic spherical 

electromagnetic wave, generated by a magnetic dipole at rq 

of layer Vq (q=0,1,2) with moment ˆ ˆ
q
r p . The primary 

electric field radiated by this dipole is expressed by 

pr ˆ ˆ ˆ ,
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where rq=|rq| and kq denotes the wavenumber of layer Vq. 

For a dipole receding to infinity, this spherical wave 

reduces to a unit amplitude plane wave with direction of 

propagation ˆ
q

r  and polarization p̂  (Tsitsas, 2009). 

The total electric field in Vq is defined as the 

superposition of the primary and the secondary field 
pr secˆ ˆ ˆ , { }
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while the total field in Vj (j≠q) is the secondary field 
q

j

r
E . 

The primary and secondary fields in the above described 

spherical scatterer satisfy Maxwell’s equations with linear 

isotropic constitutive relations (determined by scalar 

piecewise constant permittivity and permeability) and with 

vanishing electric charge and current density. By 

combining Maxwell’s equations with the constitutive 

relations, it is verified that the electric field in layer Vj 

satisfies the vector Helmholtz equation 
2 2ˆ ˆ; ;

q q

j j
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for jVr  if j q  and { }
qqVr r\  if j q . 

 

The total electric fields satisfy the transmission 

boundary conditions on the spherical surfaces r=aj (j=1,2) 
1
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For a PEC core, conditions (4) hold only for j=1, while on 

r=a2 the PEC boundary condition holds 
1ˆ ˆ( ; )

q
 rr E r p = 0 .      (5) 

The total electric field in the unbounded domain V0 

satisfies the Silver-Müller radiation condition (Colton & 

Kress, 1992) 
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uniformly for all directions r̂  in the unit sphere 
2

S . 

The secondary and the total electric fields in V0 have, 

respectively, the asymptotic expressions for r→∞, 
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where h0 the zero-th order spherical Hankel function of the 

first kind, while the q-excitation far-field pattern g 

describes the response of the scatterer in the far-field, due 

to the excitation by the primary field in layer Vq. 

The q-excitation total cross-section is defined by 

2
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and represents the average of the far-field’s power radiated 

over all directions, due to the dipole excitation in layer Vq. 

B. Solution of the Direct Scattering Problem 

The solution of the direct scattering problem is 

obtained by imposing a combined Sommerfeld T-matrix 

analytic algorithm (Tsitsas, 2009). The Sommerfeld’s 

method (Sommerfeld, 1949) handles the singularity of the 

dipole field, while the T-matrix method 

(Valagiannopoulos & Tsitsas, 2009) the effect of the 

sphere’s layers. More precisely, the primary and 

secondary fields in every layer are expressed as series of 

the spherical vector wave functions. The unknown 

coefficients in the secondary fields’ expansions are, 

subsequently, determined by applying a T-matrix method. 

The procedure is analyzed in (Tsitsas, 2009) while details 

of the calculations are included in (Katsimaglis, 2013). 

The q-excitation far-field pattern, as determined by 

applying the above mentioned algorithmic procedure, is 
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where functions B and C are defined in (Morse & 

Feshbach, 1953), 
0

,q n
a  and 

0

,q n
  are determined 

coefficients, while ˆ ( ) ( )
n n

h z zh z . The q-excitation total 

cross-section is calculated by combining (8) and (9), 

yielding the final result 
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where ,q n  and ,q n  are connected to 
0

,q n
a  and 

0

,q n
 . 

C. Low-Frequency Approximations 

The exact far-field solutions (9) and (10) are expressed 

as complicated series expansions. They can be simplified 

and become more workable by imposing the low-frequency 

assumption k0a1<<1, namely by assuming that the sphere’s 

radius a1 is much smaller than the primary field’s 

wavelength. Under this assumption, the approximations of 

the q-excitation far-field pattern, for the case of a PEC core, 

are found to be 
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and 
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where P and Q are determined coefficients, while τi=a1/ri 

(i=1,2), and η1=k1/k0. 
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Similar low-frequency approximations can be derived 

for the case of a dielectric core. 

The obtained simplified low-frequency expressions can 

be effectively utilized in the establishment of inverse 

scattering algorithms concerning the determination of the 

scattering problem’s parameters via combinations of 

certain far-field measurements. 

III. SELECTED RESULTS 

In this section, certain selected results are included 

concerning developed low-frequency inverse scattering 

algorithms for the determination of the geometrical and 

physical characteristics of the 2-layered sphere. 

A. Localization of the Sphere and Reconstruction of its 

Geometrical Characteristics 

We seek to determine the center’s coordinates and the 

layers radii of a 2-layered sphere with a PEC core and 

given dielectric permittivity and magnetic permeability of 

the covering layer. We consider the Cartesian coordinate 

system Oxyz and for a chosen fixed length ℓ the five 

dipole locations (0,0,0), (ℓ,0,0), (0,ℓ,0), (0,0,ℓ), and (0,0,2ℓ) 

with unknown distances b1, b2, b3, b4, and b5 from the 

sphere’s center (see Fig. 1). For each dipole’s location we 

measure the leading-order low-frequency term of the 0-

excitation total cross-section (11), and obtain the five 

measurements 
2 2 42
1 0,1 1 2 13

( , ) ( / ) , 1,...,5( )j jm a Q a a a b j  .   

(13) 

 

Figure 1.  The five dipoles’ locations utilized for the formulation of the 
inverse scattering algorithm determining the center’s coordinates and the 

layers radii of a 2-layered sphere with a PEC core. 

Next, we use the dimensionless normalization 
2
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Eqs. (14) constitute a system of five equations with the 

seven unknowns a1, a2, and bj. The sixth equation is the 

law of cosines 
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which by means of (14) is written in normalized form as 
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The seventh equation is derived by measuring the cross-

section for a dipole far away from the sphere (so that we 

admit plane wave incidence). This measurement is 

obtained from (11) for τ0→0 (see also (Tsitsas, 2009)), 

yielding 
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By eliminating the factor Q0,1a1
3
 between (14) and (16), 

we get 
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which determines the distances bj. Then, the center of the 

2-layered sphere coincides with the intersection point of 

the four spheres centered at (0,0,0), (ℓ,0,0), (0,ℓ,0), (0,0,ℓ) 

with determined radii b1, b2, b3, b4. 

The layers radii a1 and a2 are determined by the 

solution of the following 2×2 non-linear system of (14) 

for j=1 and (17) 
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B. Reconstruction of the Sphere’s Physical 

Characteristics 

Now, we seek to determine the relative dielectric 

permittivities and magnetic permeabilities of the sphere’s 

layers for given center’s coordinates and layers radii. The 

inverse scattering algorithm is developed for a 2-layered 

dielectric sphere. Hence, we will determine the four 

material parameters εr1, εr2, μr1, and μr2 for given radii a1 

and a2. 

Consider an exterior dipole at (0,0,b0) with known 

distance b0>a1 from the sphere’s center (see Fig. 2) and 

measure the leading order m1 and second-order m2 low-

frequency terms of the corresponding 0-excitation total 

cross-section’s expansion (see (4.17) of (Tsitsas, 2009)). 

Thus, we obtain 
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where the R and the S parameters are defined in (Tsitsas, 

2009). 

Next, consider an interior dipole at (0,0,b1) with known 

distance a2<b1<a1 from the center (see Fig. 2) and 

measure the leading order term m3 of the 1-excitation total 
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cross-section’s expansion (see (4.18) of (Tsitsas, 2009)). 

This, yields 
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Figure 2. The two dipoles’ locations utilized for the formulation of the 

inverse scattering algorithm determining the material parameters of a 2-

layered sphere with a dielectric core. 

 

Finally, measure the leading-order low-frequency term 

m4 for plane wave incidence (by removing the exterior 

dipole far away from the sphere) to get 
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Now, Eqs. (20) and (22) take the form 
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Besides, by combining (20) with (23), we have 
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while by combining (20) and (21) with (26), we obtain 
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Eqs. (24)-(27) constitute a 4×4 non-linear system with 

respect to the unknown physical parameters εr1, μr1, and εr2, 

μr2 of layers V1 and V2, respectively. 

The inverse scattering problem for a 2-layered sphere 

with PEC core can be handled by a similar and simpler 

procedure. For this type of problem we need to determine 

the two unknown material parameters εr1 and μr1 of layer 

V1 for given radii a1 and a2. Thus, two measurements will 

be sufficient. 

 

IV.   CONCLUSIONS 

In this Thesis, simple and efficient algorithms 

concerning the inverse low-frequency electromagnetic 

scattering problem of a piecewise homogeneous spherical 

scatterer were investigated. The primary field was due to a 

point dipole lying in the interior or the exterior of the 

spherical scatterer. Two particular far-field inverse 

problems were examined: the first concerned the 

determination of the layers’ radii and the location of the 

sphere’s center and the second the determination of the 

physical characteristics of the sphere. 

Interesting future research directions concern the 

investigations of the corresponding direct and inverse 

scattering problems with point dipoles lying at arbitrary 

locations inside or outside the sphere (not necessarily on 

the z-axis) and possessing arbitrary polarizations. 
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