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Abstract — In the present master thesis two important
categories of operators from Functional Analysis are
presented, compact operators and Fredholm operators.
These operators play a significant role in the solvability of
integral and more generally linear equations. The basic
properties of these operators are studied, when they are
defined in separable Hilbert spaces, as well as their
interconnection. Extra emphasis is given to the key
characteristic of a Fredholm operator, its index. The index of
such an operator determines under which conditions and in
which way the corresponding linear equations can be solved,
using the well-known Fredholm Alternative Theorem.
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I. INTRODUCTION

Operator Theory is a branch of Functional Analysis
which developed significantly in the 20" century. Two of
its most important operator classes which were
extensively studied, are the compact operators and the
Fredholm operators. The first indirect results on compact
operators can be found in the studies of Volterra and
Fredholm on Integral Equations, while the studies of
Noether on some classes of singular operators led to the
Fredholm operators (Douglas, 1972). The main principle
which connected these operators and which makes them
so important, is the Fredholm Alternative Theorem. This
theorem can provide information on the solvability of a
certain category of linear equations.

This study was focused on the central concept of the
index of a Fredholm operator. This index is the link
between Functional Analysis and Algebraic Topology and
led to one of the highlights of modern Global Analysis,
the famous Atiyah-Singer theorem (Dieudonne, 1985).
Nevertheless, throughout this work the Functional
Analysis point of view was preferred. This was due to our
objective which was mainly the research of the conditions
concerning the index of the operator of a linear equation,
under which this equation is solved directly or needs to be
transformed in an appropriate form before being solved.

The rule used for the linear equation solution is the so-
called Fredholm Alternative Theorem which is widely

Michael Anoussis
Professor of University of the Aegean and Tutor
at SST/HOU

mano@aegean.gr

applied in the Theory of Integral Equations. This theorem
can be extended to cases where the equations have
Fredholm operators of a more general kind. However, in
order to extend its applicability, the Atkinson Theorem
which allows the “regularization” of some singular
equations, was used. The transformed equations had thus a
form compatible with the Fredholm Alternative Theorem
and the same solutions with the initial ones.

II. METHODOLOGY
A. Compact operators

The class of compact operators, resulted directly from
the study of the integral equations. Indeed, the integral
operators are the most classical examples of compact
operators. The main characteristic of these operators, is
that they show similar behavior with the operators in finite
dimensional spaces and thus they can be easily analyzed.
Let us now begin with the definition of a compact
operator, before proceeding to its properties.

Definition 1: A bounded linear operator K in a Hilbert
space . (K:.z—.7) is called compact, if it maps the
closed unit ball of ..~"to a relatively compact subset of ..

More generally, we can say that an operator is compact, if
it maps bounded sets of ..~ to relatively compact sets. One
of the most characteristic examples of compact operators
is the integral operator K, where:

with k € Ly([a,b]x[a,b])’. This operator plays a central
role in the so-called Fredholm integral equations of the 2™
kind and it was actually this operator that triggered the
research on the compact operators and later on the
Fredholm operators. The basic properties of the compact
operators are the following:

Properties:

Y In L,[a,b] spaces, every integral operator is compact
(Helemskii, 2006).
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(i) If an operator K is compact, his adjoint operator
K" will be also compact.

(if) Every linear combination of compact operators is
a compact operator.

(iii) Every composition of bounded linear operators
one of which is compact, is a compact operator.

(iv) Every converging sequence of compact operators
converges to a compact operator.

From the aforementioned we can conclude that the space
of the compact operators is a Banach space.

Compact operators, as a generalization of operators in
finite dimensional spaces, show a relatively simple
structure and preserve the images of the sets upon which
they act, “small”. When we have to deal with entities like
these, it is often interesting to study also entities showing
the opposite behavior. Fredholm operators can be
regarded as a kind of anti-compact” operators.

B. Fredholm operators

Fredholm operators, as previously mentioned, resulted
from the study of the compact operators in integral
equations. Since their main characteristics are of
“geometric” nature, we will start by defining them based
on these characteristics and we will see later on in which
way they are connected and result from compact operators,
as somewhat “anti-compact” operators.

Definition 2 (Helemskii, 2006): A bounded linear

operator T:..»#—.~", in a Hilbert space ..~, is called

Fredholm operator when:

(i) the dimension of its kernel dim(ker(T)) is finite and

(ii) the co-dimension of its image codim(J (T)) is also
finite.

Apart from these two conditions, there is often a third one
demanded so that an operator is a Fredholm one. This
concerns the closedness of the image of the operator .5 (T).
However, this condition becomes superfluous, since the
closedness of S(T) is guaranteed from the Open Map
Theorem and the condition (ii) of the definition.

Every operator in a finite dimensional space is obviously
Fredholm. An example of a Fredholm operator in infinite
dimensional Hilbert spaces, is the right shift operator S;:

since ker(S,) = {0} with dim(ker (S;)) =0 and its closed
image:

has codim(J(S;)) =1.

The “physical”-geometrical meaning of the main
conditions (i) and (ii) of a Fredholm operator is firstly that
the finite dimension of the kernel shows us how “far” is
the operator from being one-one and secondly, the finite
co-dimension shows us how “far” is from being onto.

Properties:
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(i) If operator T is Fredholm, then his adjoint
operator T~ will be Fredholm also, with dim(ker
(T)) = codim(F (T)).

(if) The composition of two Fredholm operators is a
Fredholm operator.

(iif) The linear combination of Fredholm operators is
not always a Fredholm operator.

A special category of Fredholm operators, which plays an
important role in the Theory of Linear Integral Equations
is the one described below:

Proposition 1: If K:..»=.2~" is a compact operator, then
the operator I-AK (I the identity operator) is Fredholm for
every A€

Fredholm operators in general, are the direct
generalization of the 1-AK operators, with K compact. In
addition, this property indicates the fact that Fredholm
operators in infinite dimensional spaces are the “furthest”
operators from the compact ones. This is proven by the
Atkinson theorem which we will see later on. Furthermore,
since the identity operator is compact only in finite
dimensional spaces, a Fredholm operator can be compact
also only in spaces like these. But let us now see the very
important Atkinson theorem.

Theorem (Atkinson?): If T:..4>.~"is a bounded operator

in a Hilbert space .7, "then the following are equivalent:

(i) T isa Fredholm operator,

(ii) There are compact operators Ki,K,:..2"—.22” and
bounded operators S,, S,: ..2"—..~", such as:

This theorem can be formulated more shortly if we say
that Fredholm operators are the invertible modulo
compact operators. The latter is often adopted as the
definition of Fredholm operators (see i.e. Douglas, 1972).
Atkinson’s theorem serves also in “detecting” Fredholm
operators, something not at all easy to be done with the
classical definition (Schechter, 2002).

C. Index of a Fredholm operator

We saw in the previous section that Fredholm
operators have some very useful geometrical properties,
concerning their images and their kernels. Despite the
usefulness of these properties, there is another
characteristic of Fredholm operators which is the most
important and the one which led to the definition and
study of the special category of these operators. This
characteristic is the so-called index of a Fredholm
operator® and it is defined as follows:

% The theorem contains also the corresponding proposition
where instead of compact operators we have finite-rank
operators (operators with finite dimensional images),
operators of which the compact are the generalization in
infinite dimensional spaces (see Abramovich & Aliprantis,
2002).

® Fredholm operators are also called operators of finite
index, because of their index property.



Definition 3: Let T:..»#>>.2~"be a Fredholm operator in a
Hilbert space, then the index of this operator is defined as
the finite* integer:

or equivalently (Douglas, 1972):

E.g. for the right shift operator S, we saw previously, it is:

Proposition 2: If T:..»=.2~" is a Fredholm operator and
K:.7*.27" is a compact one, then T+K is a Fredholm
operator with:

This proposition shows actually that the index of a
Fredholm operator T remains invariant under compact
perturbations, to wit, under perturbations of the form T+K
with K compact. This is the most important Fredholm
operators’ property and it justifies the special study of the
index, despite the fact that the latter seems less
“geometrical” than the properties-conditions of Definition
2. We will close this section with a proposition which
extends the conclusions extracted concerning the
Fredholm operators of the form /K.

Proposition 3: An operator T:..#— .2~ will be Fredholm
with index 0 if and only if T=T,+K, where T, is an
invertible bounded operator and K a compact one.

I11. SELECTED RESULTS

A. Fredholm Alternative

We will provide here the Fredholm Alternative Theorem
(FAT), one of the most important theorems for the
solution of linear equations. It resulted from the study of
the Fredholm integral equations of the 2" kind. In this
section it will formulated in terms of compact operators in
general and not in terms of integral ones.

Theorem (FAT-1): Let K:..2=>.2~"be a compact operator
in the Hilbert space ..~; A€% and the nonhomogeneous
equations:

with corresponding homogeneous:

Then, one of the following is valid:

(i) The equations (1) and (2) have unique
solutions, for every g,je .2~ and the
homogeneous ones (3) and (4) have only the
zero solution.

(i) The equations (3) and (4) have the same
number of linearly independent solutions

* The index of a Fredholm operator is always finite, since
both dim(ker(+)) and codim(J'(-)) are finite (see Definition

2).

{fiti=i, .o, {Niki-;...» and the (1),(2) have
solutions if and only if g.th; kau jLf;, for
every i=1,2,...,n.

FAT refers to equations that are called equations of the
2" kind with a compact operator, as a generalization of
the Fredholm integral equations of the 2™ kind. If instead
of the linear equation formalism we use Operator Theory
terminology, the FAT is written shortly as:

Theorem (FAT-2): If K:..o.»
in a Hilbert space and 1€, then:

is a compact operator

Taking into account what was presented in the previous
section, we can say that FAT is equivalent with the
proposition which states that all operators of the form
I-AK with K compact, are Fredholm with index 0.

The question which immediately comes to mind after
these is whether all operators with index 0 satisfy the FAT
or not. The answer is positive and it is furthermore proven
that all linear equations with Fredholm operators of any
index value, can be transformed so that they satisfy the
FAT. As a first step, we will restate the FAT using
Fredholm operator terminology this time:

Theorem (FAT-3): If T:..2=.27"is a zero index Fredholm
operator, the following apply:
(i) T (aswell as its adjoint T") will be one-to-one if
and only if it is onto:

(i)  If dim(ker (T))#0, then it is:
dim(ker (T)) =dim(ker (T"))

In cases of linear equations of the form Tf = g with T
Fredholm with a nonzero index, the FAT does not apply
directly. The equations have to be firstly “regularized”, in
order to obtain a form complying with the conditions of
the theorem. In saying so, to be transformed to equations
of the 2" kind with a compact operator (Kress, 1999). The
way the transformation is done, depends on the index of
the operator each time and it is performed using the
Atkinson theorem and Proposition 3. There are three
distinct cases, corresponding to the cases where the index
of T is 0, positive or negative.

e If ind(T) =0, then from Proposition 3 T can be
written as a sum of an invertible operator T, and
a compact one K. The linear equations
subsequently becomes:

where K’ is a compact operator as a composition
of operators where at least one of them is
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compact. The final equation complies with the
FAT, since the operator on the left-hand side has
the desired form /—/K.

e Ifind(T)>0, from the Atkinson theorem there will
be a bounded operator S;:..#=>.2%(which will be
called the equivalent® left regularizer of T) so
that:

o If ind(T) <O, from the Atkinson theorem there will
be a bounded operator S,:..2=».27"(which will be
called the equivalent right regularizer of T) so
that:

Since K; and K, are compact (Atkinson theorem), the
regularized equations have the form (I-K)f = g and
consequently the FAT can be applied. Concluding the
aforementioned, we can say that all linear equations of the
form Tf = g with T a Fredholm operator, can be always
solved using the Fredholm Alternative whatever their
indices values are. Equations like these are often met in
the Theory of Singular Integral Equations.

IV. CONCLUSIONS

In the present work we presented two important
classes of operator from Functional Analysis, the compact
operators and the Fredholm ones. These operators, which
in infinite dimensional spaces are found the “furthest” the
former from the latter, assist in easily solving linear
equations of the form Tf = g. The central role in this
solution plays the concept of the index of a Fredholm
operator. Whenever T is a Fredholm operator with zero
index, it can be decomposed directly as a sum of an
invertible and a compact operator, so that the equation
could be subsequently solved via the Fredholm
Alternative. If the index of T is nonzero, then there are
special operators-regularizers of T which transform the
linear equation in a form which can be again solved with
the Fredholm Alternative. The latter equations, despite
their different form, have the same solutions with the
initial ones.
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