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Abstract. In this study, the structural pounding between
adjacent buildings subjected to near-fault strong
earthquakes is investigated. More specifically, two 5-storey
and two 8-storey frames, regular or irregular along their
height, are combined together to produce nine different pairs
of adjacent RC structures. These adjacent structures are
subjected to various near-fault strong ground motions and
various parameters are examined such as maximum and
permanent displacements, members’ ductility and internal
forces and interstorey drift ratios. It is found that the effect
of collision of adjacent frames seems to be unfavorable for
most of the cases and, therefore, the structural pounding
phenomenon should be taken into account during the design
process.
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. INTRODUCTION

Building structures are frequently constructed in close
proximity to one another due to limited availability of
areas, e.g. as shown in Fig. 1 in San Francisco, one of the
most vulnerable area worldwide to strong earthquakes.

Figure 1. Example of continuous building systems - San Francisco, US.

Because of inadequate separations, collision can be
occurred between adjacent buildings during strong ground
motions. This phenomenon is commonly referred to as
structural pounding. Many cases of structural damage due
to pounding can be mentioned (Moehle & Mahin, 1991).
Pounding may result in irregular response of buildings of
different heights, local damage to columns as the floor of
one building collides with columns of another, collapse of
damaged floors, and collapse of entire structures
(Anagnostopoulos & Karamaneas, 2008). Although the
extensive research on this phenomenon during the last two
decades, which is mainly referred above, the findings of
many works have been refuted by other pertinent studies.
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According to Cole et al. (2010), this discrepancy has to do
with the high level of complexity inherent in the problem.

In this study, four RC structures are examined, i.e., two
five-storey and two eight-storey planar frames, which
have been combined together to produce nine different
pairs of adjacent RC structures. These pairs of buildings
are subjected to various near-fault strong ground motions.
The inelastic time-history responses of these concrete
frames are evaluated by means of the structural analysis
software Ruaumoko (Carr 2008). The most critical
structural ~ parameters, such as the maximum
displacements and accelerations, structural damage,
members’ ductilities and interstorey drift ratios are
examined for both collided and separated buildings in
order to quantify the effect of structural pounding during
near-fault earthquakes.

Il. DESCRIPTION OF BUILDINGS

Four two-dimensional frames (F1-F4) are considered with
the first two of them (F1 and F2) having 5 storeys and the
other two (F3, F4) having 8 storeys. All buildings have
three equal bays with total length equal to 18 m. Typical
floor-to-floor height is equal to 3.0 m, but for the first
floor of the eight-storey buildings, the height is equal to
4.0 m. For example, Figs 2) and 3) depict the geometry,
sections and reinforcement of the frames F1 and F4,
respectively. Pounding between the frames in every case
took place between one 5-storey frame and one 8-storey
frame to examine closely its effects to collision of
structures with different floor levels.
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Figure 2. Five-storey regular building.
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IV.SELECTED RESULTS

This section presents selected results that have mainly to
do with the most critical response parameters such as
maximum interstorey drift ratios (IDRya) and maximum
floor total accelerations. These parameters appear to be
essential to evaluate, directly or indirectly, the structural
and non-structural damage.

Figure 5 depicts the maximum floor accelerations for
the case of REV earthquakes, examining collided and
separated structures, and for the 1% and the 6™ Buildings’
Configurations (BC#1 and BC#6).
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Figure 5. Max. floor accelerations: BC#1 - BC#6 and REV earthquakes.

Similarly, Fig. 6 depict the maximum floor
accelerations for the case of S-S earthquakes, examining
collided and separated structures, and for the 1% and the
6" Buildings’ Configurations (BC#1 and BC#6).
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Figure 6. Max. floor accelerations: BC#1 - BC#6 and S-S earthquakes.

It is obvious that the collided structures have higher
accelerations in comparison with the separated structures.

Figure 7 illustrates the maximum interstorey drift
ratios for the case of REV -earthquakes, examining
collided and separated structures, and for the 1% and the
6" Buildings’ Configurations (BC#1 and BC#6).
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Figure 7. Max. interstorey drifts: BC#1 - BC#6 and REV earthquakes.
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Similarly, Fig. 8 presents the maximum interstorey
drifts for the case of S-S earthquakes, examining collided
and separated structures, and for the 1% and the 6"
Buildings’ Configurations (BC#1 and BC#6).
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Figure 8. Max. interstorey drifts: BC#1 - BC#6 and S-S earthquakes.

It is obvious that the collided structures have higher
interstorey drifts in comparison with the separated
structures.
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Therefore, the structural pounding should be taken into
account in order to achieve a reliable seismic design.

V. CONCLUSIONS

In this study, four reinforced concrete structures are
combined together to produce nine building configurations
in order to examine the structural pounding phenomenon
between adjacent structures. The study focused on the
influence of near-fault earthquakes where strike-slip and
reverse or reverse-oblique mechanisms are investigated.
Selected characteristic and total results have been provided
in Section IV.

It is found that in most of the examined cases, the structural
pounding phenomenon appears to be detrimental than
beneficial. Therefore, although its complexity, this
phenomenon should be taken into account since its
ignorance will not lead to conservative results.
Furthermore, examining ground motions from near faults
with different mechanism, it can be concluded that the
strike-slip earthquakes seem to be more intense for the
higher buildings examined here in comparison with the
same structures subjected to earthquakes with reverse fault
mechanism. On the other hand, earthquakes with reverse
faults appear to be more intense for the lower structures
examined here.
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More investigation is needed to examine the behavior of
three-dimensional reinforced concrete structures or to
examine collided structures under near-fault earthquakes
that have been made of other materials, i.e., steel buildings,
masonry, etc.
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